В этой статье мы рассмотрим основные принципы захода на посадку на больших реактивных самолетах применительно к нашим условиям. Хотя за основу рассмотрения выбран Ту-154, следует учитывать, что на других типах ВС применяются, в общем, сходные принципы пилотирования. Информацию взята из расчета на реальную технику, а испытывать судьбу мы будем пока в MSFS98-2002, есть у фирмы "Микрософт" такой компьютерный симулятор, возможно, вы даже слышали...

Посадочная конфигурация самолета

Конфигурация самолета - сочетание положений механизации крыла, шасси, частей и агрегатов ВС, определяющих его аэродинамические качества.

На транспортном самолете, еще до входа в глиссаду, должна быть выпущена механизация крыла, шасси и переложен стабилизатор. Кроме того, по решению командира воздушного судна, экипаж может включить автопилот и/или автомат тяги для захода в автоматическом режиме.

Механизация крыла

Механизация крыла - комплекс устройств на крыле, предназначенных для регулирования его несущей способности и улучшения характеристик устойчивости и управляемости. Механизация крыла включает закрылки, предкрылки, щитки (интерцепторы), активные системы управления пограничным слоем (например, его сдув, отбираемым от двигателей воздухом) и т.д.

Закрылки (flaps)

В целом, закрылки и предкрылки предназначены для повышения несущей способности крыла на взлетно-посадочных режимах.

Аэродинамически, это выражается в следующем:

  1. закрылки увеличивают площадь крыла, что приводит к увеличению подъемной силы.
  2. закрылки увеличивают кривизну профиля крыла, что приводит к более интенсивному отклонению воздушного потока вниз, что также увеличивает подъемную силу.
  3. закрылки увеличивают аэродинамическое сопротивление самолета, а значит вызывают уменьшение скорости.

Увеличение подъемной силы крыла позволяет снизить скорость до более низкого предела. Например, если при массе 80 т скорость сваливания Ту-154Б без закрылков составляет 270 км/ч, то после выпуска закрылков полностью (на 48 град) она уменьшается до 210 км/ч. Если уменьшить скорость ниже этого предела, самолет выйдет на опасные углы атаки, возникнет срывная тряска (бафтинг, buffeting) (особенно при убраных закрылках) и, в конце концов, произойдет сваливание в штопор .

Крыло, оборудованное закрылками и предкрылками, образующими в нем профилированные щели, называют щелевым . Закрылки также могут состоять из нескольких панелей и иметь щели. Например, на Ту-154М применяются двухщелевые , а на Ту-154Б трехщелевые закрылки (на фото Ту-154Б-2). На щелевом крыле воздух из области повышенного давления под крылом с большой скоростью поступает через щели на верхнюю поверхность крыла, что приводит к уменьшению давления на верхней поверхности. При меньшей разности давлений, обтекание крыла получается более плавным и тенденция к формированию срыва уменьшается.

Угол атаки (УА), Angle of Attack (AoA)

Основное понятие аэродинамики. Углом атаки профиля крыла называется угол, под которым профиль обдувается набегающим потоком воздуха. В нормальной ситуации УА не должен превышать 12-15 град, в противном случае возникает срыв потока , т.е. образование турбулентных “бурунчиков” за крылом, как в быстром ручье, если поставить ладонь не вдоль, а поперек потока воды. Срыв приводит к потере подъемной силы на крыле и сваливанию самолета.

На "небольших" самолетах (включая Як-40, Ту-134) выпуск закрылков обычно приводит к “вспуханию” - самолет немного увеличивает вертикальную скорость и задирает нос. На "больших" самолетах стоят системы улучшения устойчивости и управляемости , которые автоматически парируют возникающий момент опусканием носа. Такая система есть на Ту-154 поэтому там "вспухание" невелико (кроме того, там момент выпуска закрылков совмещено с моментом перекладки стабилизатора, который создает противоположный момент). На Ту-134 пилоту приходится гасить увеличение подъемной силы вручаную отклоняя штурвальную колонку от себя. В любом случае, для уменьшения "вспухания", закрылки принято выпускать в два или три приема - обычно сначала на 20-25, потом на 30-45 градусов.

Предкрылки (slats)

Кроме закрылков, почти все транспортные самолеты также имеют предкрылки , которые установлены в передней части крыла, и автоматически отклоняются вниз одновременно с закрылками (пилот о них почти не думает). Принципиально они выполняет ту же функцию, что и закрылки. Отличие состоит в следующим:

  1. На больших углах атаки, отклоненные вниз предкрылки как крючком цепляются за набегающий поток воздуха, отклоняя его вниз вдоль профиля. В результате, предкрылки уменьшают угол атаки остальной части крыла и откладывают момент сваливания на большие углы атаки.
  2. Предкрылки обычно имеют меньший размер, а значит и меньшее лобовое сопротивление.

В целом, выпуск как закрылков так и предкрылков сводится к увеличению кривизны профиля крыла, что позволяет сильнее отклонять вниз набегающий поток воздуха, а значит увеличивать подъемную силу.

Насколько до сих пор известно, предкрылки отдельно в аir-файле не выделены.

Чтобы понять, на фига на самолетах применяется такая сложная механизация, понаблюдайте за приземлением птиц. Часто можно обратить внимание, как голуби и им подобные вороны садятся сильно распушив крылья, поджимая хвост и стабилизатор под себя, пытаясь получить профиль крыла большой кривизны и создать хорошую воздушную подушку. Это и есть выпуск закрылков и предкрылков.

Механизация B-747 на посадке

Интерцепторы (spoilers)

Интерцепторы , они же спойлеры представляют собой отклоняемые тормозные щитки на верхней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают подъемную силу (в отличие от закрылков и предкрылков). Поэтому интерцепторы (особенно на "илах") также называют гасителями подъемной силы .

Интерцепторы - это очень широкое понятие, в которое напичкано много всяких разновидностей гасителей, и на разных типах они могут называться по-разному и располагаться в разных местах.

В качестве примера рассмотрим крыло самолета Ту-154, на котором применяются три типа интерцепторов:

1) внешние элерон-интерцепторы (spoilerons, roll spoilers)

Элерон-интерцепторы представляют собой дополнение к элеронам. Они отклоняются несимметрично. Например на Ту-154, при отклонении левого элерона вверх на угол до 20 град, левый элерон-интерцептор автоматически отклоняются вверх на угол до 45 град. В результате подъемная сила на левом полукрыле уменьшается, и самолет кренится влево. То же самое для правого полукрыла.

Почему нельзя обойтись только одними элеронами?

Дело в том, что чтобы создать момент крена на большом самолете, нужна большая площадь отклоняемых элеронов. Но, поскольку реактивные самолеты летают на скоростях близких к звуковым, они должны иметь тонкий профиль крыла, который бы не создавал слишком большого сопротивления. Применение больших элеронов приводило бы к его скручиванию и всяким нехорошим явлениям типа реверса элеронов (такое, например, может иметь место быть на Ту-134). Поэтому нужен способ распределить нагрузку на крыло более равномерно. Для этого и используются элерон-интерцепторы.- щитки, установленные на верхней поверхности, которые при отклонении вверх, уменьшают подъемную силу на данном полукрыле, и "топят" его вниз. Скорость вращения по крену при этом значительно возрастает.

Пилот не задумывается об элерон-интерцепторах, с его точки зрения, все происходит автоматически.

В air-файле элерон-интерцепторы, в принципе, предусмотрены.

2) средние интерцепторы (spoilers, speed brakes)

Средние интерцепторы это то, что обычно понимают под просто "интерцепторами" или "спойлерами" - т.е. "воздушные тормоза". Симметричное задействование интерцепторов на обеих половинах крыла приводит к резкому уменьшению подъемной силы и торможению самолета. После выпуска "воздушных тормозов" самолет сбалансируется на большем угле атаки, начнет тормозиться за счет возросшего сопротивления и плавно снижаться.

На Ту-154 средние интерцепторы отклоняются на произвольный угол до 45 град с помощью рычага на среднем пульте пилотов. Это к вопросу, где у самолета стоп-кран.

На Ту-154 внешние и средние интерцепторы это конструктивно разные элементы, но на других самолетах "воздушные тормоза" могут быть конструктивно совмещены с элерон-интерцепторами. Например, на Ил-76 интерцепторы обычно работают в элеронном режиме (с отклонением на угол до 20 град), а при необходимости - в тормозном (с отклонением на угол до 40 град).

Выпускать средние интерцепторы при заходе на посадку не надо. Вообще-то, выпуск интерцепторов после выпуска шасси обычно запрещен. В нормальной ситуации, интерцепторы выпускаются для более быстрого снижения с эшелона с вертикальной скоростью до 15 м/c и после после приземления самолета. Кроме того, они могут применяться при прерванном взлете и экстренном снижении.

Бывает, что "виртуальщики" при заходе на посадку забывают убрать газ, и держат режим чуть ли не на взлетном, пытаясь вписаться в схему посадки с очень высокой скоростью, вызывая гневные вопли диспетчера в стиле “Maximum speed below ten thousand feet is 200 knots!” В таких случаях можно кратковременно выпустить средние интерцепторы, но в реальности, это вряд ли приведет к чему-нибудь хорошему. Лучше пользоваться таким грубым методом гашения скорости заблаговременно - только на снижении, причем не всегда обязательно выпускать интерцепторы на полный угол.

3) внутренние интерцепторы (ground spoilers)

Также "тормозные щитки"

Расположены на верхней поверхности во внутренней (корневой) части крыла между фюзеляжем и гондолами шасси. У Ту-154 автоматически отклоняются на угол 50 град после приземления при обжатии основных аморстоек шасси, скорости более 100 км/ч и РУД-ах в положении "малый газ" или "реверс". Одновременно отклоняются и средние интерцепторы..

Внутренние интерцепторы предназначены для гашения подъемной силы после приземления или при прерваном взлете. Как и другие типы интерцепторов, они не столько гасят скорость, сколько гасят подъемную силу крыла, что приводит к увеличению нагрузки на колеса и улучшению сцепления колес с поверхностью. Благодаря этому после выпуска внутренних интерцепторов можно переходить к торможению с помощью колес.

На Ту-134 тормозные щитки - это единственный тип интерцепторов.

В симуляторе внутренние интерцепторы либо отсутствуют, либо воссоздаются достаточно условно.

Балансировка по тангажу

Большие самолеты имеют ряд особенностей управления по тангажу, о которых нельзя не упомянуть. Триммирование, центровка, балансировка, перекладка стабилизатора, расход штурвальной колонки. Рассмотрим эти вопросы более подробно.

Тангаж (pitch)

Тангаж (pitch) - угловое движение летательного аппарата относительно поперечной оси инерции, а проще говоря "задир". У моряков эта фигня называется "дифферент". Тангаж противопоставлен крену (bank) и рысканию (yaw) , которые соответственно характеризуют положения ЛА при его вращении вокруг продольной и вертикальной оси. Соответственно различают углы тангажа, крена и рысканья (иногда их называют углы Эйлера). Термин "рысканье" можно заменять словом "курс", например говорят "в канале курса".

Отличие угла тангажа от угла атаки, надеюсь объяснять нет необходимости... Когда самолет падает совершенно плашмя, как утюг, угол атаки у него будет 90 град, а угол тангажа будет близок к нулю. Наоборот, когда истребитель идет в наборе, на форсаже, с хорошей скоростью, у него угол тангажа может быть 20 град, а угол атаки, скажем, всего 5 град.

Триммирование

Чтобы обеспечить нормальное пилотирование, усилие на штурвале должно быть ощутимым, в противном случае, любое случайное отклонение могло бы ввести самолет в какой-нибудь нехороший штопор. Собственно говоря, именно поэтому на тяжелых самолетах, не предназначенных для выполнения резких маневров, обычно применяются штурвалы, а не ручки - их не так просто случайно отклонить по крену. (Исключение составляет Airbus, который предпочитает джойстики.)

Понятно, что при затяжеленном управлении бицепсы у пилота будут постепенно развиваться довольно приличные, более того, если самолет разбалансирован по усилиям его трудно пилотировать, т.к. любое ослабление усилия толкнет штурвальную колонку (ШК) не туда, куда надо. Поэтому, чтобы в процессе выполнения полета, летчики могли иногда хлопнуть стюардессу Катьку по заднице, на самолетах устанавливают триммеры.

Триммер - устройство, которое тем или иным способом фиксирует штурвал (ручку управления) в заданном положении, дабы папелац мог снижаться, набирать высоту и лететь в горизонтальном полете и т.д. без приложения усилий к штурвальной колонке.

В результате триммирования, точка, в которую тянет штурвал (ручку), будет не совпадать с нейтральным положением для данного руля. Чем дальше от положения триммирования, тем большие усилия приходится прикладывать, чтобы удержать штурвал (ручку) в заданном положении.

Чаще всего, под триммером имеют в виду триммер в канале тангажа - т.е. триммер руля высоты (РВ). Тем не менее, на больших самолетах триммеры на всякий случай, ставят во всех трех каналах - там они обычно выполняют вспомогательную роль. Например, в канале крена триммирование может применятся при продольной разбалансировки самолета из-за несимметричной выработки топлива из крыльевых баков, т.е. когда одно крыло перетягивает другое. В канале курса - при отказе двигателя, чтобы самолет не рыскал в сторону, когда один двигатель не работает. И т.д.

Триммирование можно технически реализовать следующими способами:

1) с помощью отдельного аэродинамического триммера , как на Ту-134- т.е. маленького "рулька" на руле высоты, который удерживают основной руль в заданном положении с помощью аэродинамической компенсации, т.е. используя силу набегающего потока. На Ту-134 для управления таким триммером используется колесо триммера , на которое наматывается трос, идущий к РВ.

2) с помощью МЭТ (механизма эффекта триммирования) , как на Ту-154 - т.е. просто регулируя затяжку в системе пружин (правильнее сказать, пружинных загружателей ), которые чисто механически удерживает штурвальную колонку в заданном положении. Когда шток МЭТ перемещается вперед-назад, загружатели то ослабляются, то натягиваются. Для управления МЭТ используются небольшие нажимные переключатели на рукоятках штурвалов, при включении которых, шток МЭТ, а за ним и штурвальная колонка медленно перемещаются в заданное положение. Аэродинамические триммеры как на Ту-134, на Ту-154 отсутствуют.

3) с использованием переставного стабилизатора , как на большинстве западных типов (см ниже)

В симуляторе трудно воссоздать настоящий триммер руля высоты, для этого придется использовать навороченный джойстик с эффектом триммирования, потому что, то, что в MSFS называется триммером, по сути, не стоит воспринимать как таковой - правильнее было бы замазать джойстик пластилином или жевачкой или просто положить мышь на стол (в FS98) - вот вам и триммер. Надо сказать, что управление это вообще больное место всех симуляторов. Даже если купить самый навороченный штурвал и систему педалей, оно все равно, скорее всего, будет далековато от реального. Имитация она и есть имитация, потому что, чтобы получить абсолютно точную копию настоящего самолета нужно затратить столько же усилий и переработать столько же информации, сколько и для того, чтобы построить настоящий самолет...

Центровка (CG)

Центровка воздушного судна (Center of Gravity (CG) position) - положение центра тяжести, измеряемое в процентах длины так называемой средней аэродинамической хорды (САХ, Mean Aerodynamic Chord, MAC) - т.е. хорды условного прямоугольного крыла, равноценного данному крылу, и имеющее с ним одинаковую площадь.

Хорда - отрезок прямой, соединяющий переднюю и заднюю кромку профиля крыла.

положение центра тяжести 25% САХ

Длину средней аэродинамической хорды находят интегрированием по длинам хорд вдоль всех профилей полукрыла. Грубо говоря, САХ характеризуют наиболее распространенный, наиболее вероятный профиль крыла. т.е. предполагается, что все крыло со всем его разнобоем профилей можно заменить одним единственном усредненным профилем с одной единственной усредненной хордой - САХ.

Чтобы найти положение САХ, зная его длину, нужно пересечь САХ с контуром реального крыла и посмотреть, где находится начало полученного отрезка. Эта точка (0% САХ) и будет служить точкой отсчета для определения центровки.

Разумеется, транспортный самолет не может иметь постоянную центровку. Она будет меняться от вылета к вылету из-за перемещений грузов, изменения количества пассажиров, а также в процессе полета по мере выработки топлива. Для каждого самолета определен допустимый диапазон центровок, при котором обеспечивается его хорошая устойчивость и управляемость. Обычно различают переднюю (для Ту-154Б - 21-28%), среднюю (28-35%) и заднюю (35-50%) центровки - для других типов цифры будут несколько отличаться.

Центровка пустого самолета сильно отличается от центровки заправленного самолета со всеми грузами и пассажирами, и для ее расчета перед вылетом заполняется специальный центровочный график .

Пустой Ту-154Б имеет центровку порядка 49-50% САХ, при том, что при 52,5% он уже опрокидывается на хвост (двигатели на хвосте перетягивают). Поэтому под хвостовой частью фюзеляжа в некоторых случаях необходимо устанавливать страховочную штангу.

Балансировка в полете

У самолета со стреловидным крылом центр приложения подъемной силы на крыле расположен в точке примерно 50-60% САХ, т.е. позади центра тяжести, который в полете обычно располагается в районе 20-30 % САХ.

В результате, в горизонтальном полете на крыле возникает рычаг подъемной силы , который хочет опрокинуть самолет на нос, т.е. в нормальной ситуации самолет находится под действием пикирующего момента .

Чтобы избежать всего этого, в течении всего полета придется парировать возникающий пикирующий момент балансировочным отклонением РВ , т.е. отклонение руля высоты не будет равно нулю даже в горизонтальном полете.

В основном, чтобы удержать самолет от "клевка" нужно будет создавать кабрирующий момент , т.е. РВ нужно будет отклоняться вверх.

Кабрировать - от фр. cabrer , "ставить на дыбы".

Всегда только вверх? Нет, не всегда.

При увеличении скорости, скоростной напор увеличится, а значит пропорционально возрастет суммарная подъемная сила на крыле, на стабилизаторе и на руле высоты

F под = F под1 – F под2 – F под3

Но сила тяжести останется прежней, а значит самолет перейдет в набор. Чтобы снова сбалансировать папелац в горизонтальном полете, придется опустить руль высоты пониже (отдать штурвал от себя), т.е. уменьшить слагаемое F под3 . Тогда нос опустится, и самолет снова сбалансируется в горизонтальном полете, но уже на меньшем угле атаки.

Таким образом, для каждой скорости у нас будет свое балансировочное отклонение РВ - мы получим ажно целую балансировочную кривую (зависимость отклонения РВ от скорости полета). На больших скоростях, придется отдавать штурвальную колонку от себя (РВ вниз), чтобы удержать самик от кабрирования, на малых скоростях придется брать штурвальную колонку на себя (РВ вверх), чтобы удержать самик от пикирования . Штурвал и руль высоты будут находится в нейтральном положении только на какой-то одной определенной приборной скорости (около 490 км/ч для Ту-154Б).

Стабилизатор (Horizontal Stabilizer)

Кроме того, как видно из приведенной схемы, самолет можно балансировать не только рулем высоты, но и переставным стабилизатором (слагаемое Fпод2). Такой стабилизатор с помощью специального механизма может целиком устанавливаться на новый угол. Эффективность такой перекладки будет примерно в 3 раза выше - т.е. 3 град отклонения РВ будут соответствовать 1 град отклонения стабилизатора, т.к. его площадь горизонтального стабилизатора у "тушки" примерно в 3 раза больше площади РВ.

В чем преимущество использования переставного стабилизатора? Прежде всего в том, что при этом уменьшается расход руля высоты . Дело в том, что иногда из-за слишком передней центровки для удержания самолета на определенном угле атаки приходится использовать весь ход штурвальной колонки - пилот выбрал управление полностью на себя, и дальше самолет уже не заманишь вверх никакой морковкой. Это особенно может иметь место на посадке с предельно передней центровкой, когда при попытке ухода на второй круг, руля высоты может не хватить. Собственно говоря, значение предельно передней центровки и устанавливаются из расчета, чтобы располагаемого отклонения руля высоты хватало на всех режимах полета.

Поскольку РВ отклоняется относительно стабилизатора, то нетрудно видеть, что применение переставного стабилизатора уменьшит расход штурвала и увеличит доступный диапазон центровок и доступных скоростей . А значит можно будет взять больше грузов и расположить их более удобным способом.

В горизонтальном полете на эшелоне стабилизатор Ту-154 находится под углом -1.5 град на кабрирование по отношению к фюзеляжу, т.е. почти горизонтально. На взлете и на посадке , он перекладывается дальше на кабрирование на угол до -7 град относительно фюзеляжа, чтобы создать достаточный угол атаки для поддержания самолета в горизонтальном полете на малой скорости.

Особенностью Ту-154 является то, что перестановка стабилизатора осуществляется только на взлете и на посадке , а в полете он убирается в положение -1.5 (которое считается нулевым), и самолет тогда балансируется одним рулем высоты.

При этом, для удобства экипажа и по ряду других причин, перекладка совмещена с выпуском закрылков и предкрылков, т.е. при переводе рукоятки закрылков из положения 0 в положение на выпуск, автоматически выпускаются предкрылки и стабилизатор перекладывается в согласованное положение. При уборке закрылков после взлета - то же самое, в обратном порядке.

Приведем таблицу, которая висит в кабине экипажа, чтобы постоянно ему напоминать, что у них там блин на фиг выпускается...

Таким образом, все происходит само собой. На круге перед посадкой на скорости 400 км/ч экипаж только должен проверить соответствует ли балансировочное отклонение РВ положению задатчика стабилизатора и, если нет, то устанавить задатчик в нужное положение. Скажем, стрелка указателя положения РВ в зеленом секторе, значит задатчик ставим на зеленое "П" - все достаточно просто и не требует значительных умственных усилий...

При отказах автоматики все выпуски и перекладки механизации можно проделать и в ручном режиме. Например, если речь идет о стабилизаторе, нужно откинуть колпак слева на фото и переставить стабилизатор в согласованное положение.

На других типах ВС, эта система работает иначе. Например на Як-42, MD-83, B-747 (затрудняюсь сказать за всю Одессу, но так должно быть на большинстве западных самолетов) стабилизатор отклоняется в течение всего полета и полностью заменяет собой триммер . Такая система более совершенна, т.к позволяет уменьшить сопротивление в полете, поскольку стабилизатор из-за большой площади отклоняется на меньшие углы, чем РВ.

На Як-40, Ту-134 стабилизатор также обычно регулируется независимо от механизации крыла.

Теперь об MSFS. В симуляторе мы имеем ситуацию "триммирующего стабилизатора", как на западных типах. Отдельного виртуального триммера в МSFS нет. Та прямоугольная штучка (как на "цесссне"), которая у микрософт называется "триммером" на самом деле является стабилизатором, что заметно, по независимости ее работы от РВ.

Почему так? Вероятно, все дело в том, что изначально (в конце 80-х) FS использовался как программная база для полнофункциональных тренажеров, на которых стояли реальные штурвальные колонки и реальные МЭТ-ы. Когда МS купила (сперла?) FS, она не стала глубоко вникать в особенности его работы (а возможно, даже не имела к нему полного описания), поэтому стабилизатор стал называться триммером. По крайней мере, такое предположение хочется сделать, изучая MS+FS, ведь описание к air-файлу так и не было опубликовано, а по качеству дефолтных моделей и ряду других признаков можно сделать вывод, что микрософт и само в нем не особо разбирается.

В случае Ту-154, вероятно, следует установить микрософтовский триммер один раз перед посадкой в горизонтальном полете, чтобы индикатор руля высоты был приблизительно в нейтральном положении, и больше к нему не возвращаться, а работать только триммером джойстика, которого ни у кого нет... Или работать c "прямоугольной штучкой", закрывать глаза и повторять про себя: "Это не стабилизатор, это не стабилизатор...."

Автомат тяги (Auto Throttle)

В штурвальном режиме КВС или 2П управляет двигателями с помощью РУД-ов (рычагов управления двигателями) на среднем пульте или подавая команды бортинженеру: "Режим такой-то"

Иногда бывает удобно управлять двигателями не вручную, а с помощью автомата тяги (auto throttle, АТ) , который старается удержать скорость в допустимых пределах, автоматически регулируя режим двигателей.

Включите АТ (клавиша Shift R), задайте нужную скорость на УС-И (указатель скорости), и автоматика будет пытаться выдерживать ее без вмешательства пилота. На Ту-154 скорость при включенном АТ-6-2 можно регулировать двумя способами 1) вращая кремальеру на левом либо на правом УС-И 2) вращая регулятор на ПН-6 (=пультик СТУ и автомата тяги).

Разновидности систем посадки

Различают визуальный заход и заход по приборам .

Чисто визуальный заход на посадку на больших самолетах применяется редко и может вызвать трудности даже у опытного экипажа. Поэтому обычно заход осуществляется по приборам , т.е. с применением радиотехнических систем под управлением и контролем диспетчера УВД .

Управление воздушным движением (УВД, Air Traffic Control, ATC) - управление движением воздушных судов в полете и на площади маневрирования аэродрома.

Радиотехнические системы посадки

Рассмотрим заходы с применением радиотехнических систем посадки. Их можно подразделить на следующие типы:

“по ОСП” , т.е. с использованием ДПРМ и БПРМ

“по РМС” , т.е. с использованием ILS

“по РСП” , т.е. по локатору.

Заход по ОСП

Также известен как "заход по приводам" .

ОСП (оборудование системы посадки) - комплекс наземных средств, включающих две приводных радиостанции с маркерными радиомаяками, а также светотехническое оборудование (СТО) , установленное на аэродроме по утвержденной типовой схеме.

Конкретно, ОСП включает в себя

"дальний" (приводной радиомаяк) (ДПРМ, Outer Marker, OM) - дальнюю приводную радиостанцию со своим маркером, которая располагается в 4000 (+/- 200) м от торца ВПП. При пролете маркера в кабине срабатывает световая и звуковая сигнализация. Морзянка cигнала в системе ILS имеет вид “тире-тире-тире...“.

"ближний" (приводной радиомаяк) (БПРМ, Middle Marker, MM) - ближнюю приводную радиостанцию тоже со своим маркером, которая располагается в 1050 (+/- 150) м от торца ВПП. Морзянка в системе ILS имеет вид “тире-точка-...“

Приводные радиостанции работают в диапазоне 150-1300 кГц.

При полете по кругу, первый и второй комплекты автоматического радиокомпаса (АРК, Automatic Direction Finder, ADF) настраиваются на частоты ДПРМ и БПРМ- при этом одна стрелка на указателе АРК будет показывать на ДПРМ, вторая на БПРМ.

Напомним, что стрелка указателя АРК всегда показывает на радиостанцию подобно тому, как стрелка магнитного компаса, всегда показывает на север. Следовательно, при полете по схеме, момент начала четвертого разворота можно определить по курсовому углу радиостанции (КУР) . Скажем, если ДПРМ радиостанция точно слева, то КУР=270 град. Если мы хотим развернуться на нее, то разворот нужно начинать на 10-15 град раньше (т.е. при КУР=280...285 град). Пролет над радиостанцией будет сопровождаться разворотом стрелки на 180 град.

Таким образом, при полете по кругу курсовой угол ДПРМ помогает определить моменты начала выполнения разворотов на круге. В этом плане ДПРМ представляет собой что-то вроде точки отсчета, относительно которой рассчитываются многие действия при заходе на посадку.

К радиостанции также присобачен маркер , или маркерный радиомаяк - передатчик, посылающий вверх узконаправленный сигнал, который при пролете над ним воспринимается самолетными приемниками и заставляет срабатывать индикаторную лампочку и электрозвонок. Благодаря этому, зная на какой высоте следует проходить ДПРМ и БПРМ (обычно это 200 и 60 м соответственно) можно получить две точки, по которым можно построить предпосадочную прямую.

На западе, на аэродромах категории II и III cо сложным рельефом местности на расстоянии 75..100 м от торца ВПП устанавливают еще и внутренний радиомаркер (Inner Marker, IM) (c морзянкой “точка-точка-точка....“), который используется как дополнительное напоминание экипажу о приближении к моменту начала визуального наведения и необходимости принятия решения о посадке.

Комплекс ОСП относится к упрощенным системам посадки, он должен обеспечивать экипажу воздушного судна привод в район аэродрома и маневр снижения до высоты визуального обнаружения ВПП. На практике он играет вспомогательное значение и обычно не отменяет необходимость использования системы ILS или посадочного радиолокатора. Чисто по ОСП заходят только при отсутствии более совершенных систем посадки.

При заходе только по ОСП горизонтальная видимость должна составлять не менее 1800 м, вертикальная не менее 120 м. Если этот метеоминимум не соблюдается, необходимо уйти на запасной аэродром .

Обратите внимание, что ДПРМ и БПРМ на разных концах полосы имеют одну и ту же частоту. В нормальной ситуации, радиостанции на другом конце должны быть выключены, но в симе это не так, поэтому при полете по кругу, АРК часто начинает глючить, цепляя то одну радиостанцию, то другую.

Заход по РМС

Также говорят "заход по системе" . В общем-то, это то же самое, что и заход по ILS. (см.также статью Дмитрия Просько на этом сайте)

В русскоязычной терминологии радиомаячная система посадки (РМС) используется как обобщающий термин, который включает в себя различные разновидности систем посадки- в частности, ILS (Instrument Landing System) (как западный стандарт) и СП-70, СП-75, СП-80 (как отечественные стандарты).

Принципы захода по РМС достаточно просты.

Наземная часть РМС состоит из двух радиомаяков - курсового радиомаяка (КРМ) и глиссадного радиомаяка (ГРМ) , которые излучают два наклонных луча (равносигнальные зоны) в вертикальной и горизонтальной плоскости. Пересечение этих зон образует траекторию захода на посадку. Самолетные приемные устройства определяют положение самолета относительно этой траектории и выдают управляющие сигналы на командно-пилотажный прибор ПКП-1 (проще говоря, на авиагоризонт) и планово-навигационный прибор ПНП-1 (проще говоря, на указатель курса).

Если частота настроена правильно, то при подходе к полосе пилот увидит на большом авиагоризонте две перемещающихся линии - вертикальную командную стрелку курса и горизонтальную командную стрелку глиссады , а также два треугольных индекса, обозначающих положение ВС относительно расчетной траектории.

Скорость захода самолета на посадку в соответствии с требованиями норм летной годности из условия обеспечения высокой безопасности полета должна быть не менее 1,3 скорости сваливания (или минимальной скорости), установленной для посадочной конфигурации самолета. При этом в процессе летных испытаний самолета должна быть показана возможность безопасного выполнения посадки и ухода на второй круг без превышения допустимого угла атаки при минимальной демонстрационной скорости захода на посадку Vз. п.д. тіп, которая назначается из следующих условий:

у. < (Vз. п. 15 км/ч при VЗ. п. ^ 200 км/ч>

З. П.ДЛ11П I уз п Ю км/Ч при VЗ. П. ^ 200 км/ч>

Максимальная скорость захода самолета на посадку должна быть не менее Vr3.n. + 25 км/ч независимо от полетной массы самолета.

Во всем диапазоне разрешенных скоростей захода на посадку самолет должен приземляться на основные колеса шасси без первоначального касания поверхности ВПП носовыми колесами или хвостовой частью фюзеляжа(хвостовой опорой);не должны также возникать капотирование или “козленке” самолета.

Эти условия определяют диапазон допустимых углов тангажа самолета в момент приземления. Посадочный угол атаки определяется углами тангажа и наклона траектории полета самолета в момент приземления, зависящими от метода посадки. Изменение угла атаки и угла наклона траектории по сравнению с их значениями на участке планирования самолета по посадочной глиссаде при различных методах посадки могут быть определены расчетом или из статистических материалов, что позволяет связать диапазон допустимых углов тангажа в момент приземления с диапазоном допустимых углов атаки при заходе на посадку, при которых обеспечивается безопасная посадка.

Такой подход позволяет определить диапазон допустимых углов атаки при заходе самолета на посадку. Фактический угол атаки на этом этапе в основном определяется аэродинамической компоновкой крыла самолета в посадочной конфигурации. Основную роль при этом играют максимальные несущие свойства крыла, т. е.максимальное значение коэффициента подъемной силы Сушах и соответствующий ему угол атаки, а также коэффициент подъемной силы при нулевом угле атаки.

Для современных транспортных и пассажирских самолетов применяются три метода посадки:

Посадка с полным выравниванием и выдерживанием, на

котором угол атаки самолета увеличивается до посадочного;

Посадка с полным выравниванием без участка выдерживания;

Посадка с неполным выравниванием (в основном при автоматической посадке).

На всех воздушных этапах режима посадки угол тангажа самолета v по строительной оси фюзеляжа, угол наклона траектории полета в и угол атаки а связаны соотношением:

ь = в + а-<р кр, (6.32)

где <р кр -угол заклинення крыла относительно строительной оси фюзеляжа.

На участках выравнивания и выдерживания скорость полета самолета постепенно уменьшается, а угол атаки увеличивается. Связь между углами атаки в момент приземления а пос. и на планировании по глиссаде а з. п. определяются зависимостью

Япос - #з. п.+А #1 + Л а2, (6.33)

где и А а2-приращение угла атаки на участках выравнивания и выдерживания соответственно.

С учетом (6.31) и (6.32) можно записать

VnOC = в ПОС #З. П. А С?1 "Ь А СІ2 Ф КР (6.34)

где t>noc и в пос -угол тангажа и угол наклона траектории самолета в момент приземления (касания.)

Результаты расчетов и статистической обработки материалов летных испытаний и эксплуатации пассажирских самолетов показывают, что на участке выравнивания угол атаки увеличивается на 1,5 2°, а на участке выдерживания угол атаки должен возрасти до

посадочного а пос. При посадке самолета с неполным выравниванием угол атаки должен быть близок к посадочному и вследствие этого угол атаки самолета на планировании по посадочной глиссаде должен быть меньше посадочного на 2^2,5°.Угол заклинення крыла ф кр для современных пассажирских самолетов близок к’ 3°.

С учетом принятых допущений связь между углом тангажа в момент приземления и углом атаки при заходе на посадку можно определить по формуле(бчЗЗ):

£>пос - #зл.+ (0,54-4*)-при па*юм выравнивании и полном

выдерживании;

v пос - а з. п. - (1,0 — г 1,5°) -при полном выравнивании без

участка выдерживания;

Vnoc=a з. п. -3°-при неполном выравнивании.

На современных пассажирских и транспортных самолетах для сокращения потребной посадочной полосы целесообразно посадку производить без участка выдерживания. Тогда минимально допустимый угол атаки на планировании по глиссаде при заходе на посадку должен выбираться из условия отсутствия касания ВПП носовым колесом шасси.

Для определения количественных требований к углу атаки при заходе на посадку необходимо установить допустимые значения угла тангажа в момент приземления. Обычно пассажирские и транспортные самолеты компонуются так, что момент касания носовым колесом поверхности ВПП соответствует нулевому углу тангажа vKac н. к-0.

Касание ВПП хвостовой частью фюзеляжа (хвостовой опорой) для различных самолетов происходит при различных значениях угла тангажа в зависимости от обводов хвостовой части фюзеляжа и высоты основных стоек шасси. Поэтому в расчетах следует учитывать угол тангажа, при котором происходит касание ВПП хвостовой частью фюзеляжа. Среднее значение угла тангажа касания

ВПП ХВОСТОВОЙ ОПОрОЙ МОЖНО ПрИНЯТЬ раВНЫМ Укас хв= 11

Для выбора рекомендуемого диапазона значений угла атаки самолета при заходе на посадку, при котором отсутствует первоначальное касание ВПП носовым колесом или хвостовой частью фюзеляжа, используем значения разрешенных в эксплуатации максимальных и минимальных значений угла тангажа:

Чпах^ ^кас хв”1 И Vmn ^ $ каскрн. к. + 1°

(запас по углу тангажа в±1° вводится для обеспечения безопасности приземления самолета) .Таким образом, для обеспечения безопасности самолета на посадке необходимо, чтобы угол тангажа в момент приземления был бы больше 1° и меньше 10°.

Расчеты показывают, что в момент приземления для обеспечения угла тангажа в допустимом диапазоне fnoc-Г-г 10° значения угла атаки самолета на планировании по посадочной глиссаде должны находиться в следующем диапазоне:

www. vokb-la. spb. ru — Самолёт своиіуіи руками?!

2,5° < а з. п.<9°-при посадке самолета без участка

выдерживания;

4°<<2’з. п.<9°-при посадке самолета с неполным выравниванием.

Необходимо также определить допустимые углы атаки при заходе самолета на посадку с учетом разброса скорости захода на посадку от рекомендованных значений (Л Vi = 15 км/ч и AV^

10 км/ч). Тогда диапазон угла атаки самолета на режиме захода на посадку должен быть следующий:

Для тех компоновок самолета, у которых значения угла тангажа ^кас н. к И VKac хв. ОТЛИЧЭЮТСЯ ОТ ПрИНЯТЫх(0° И 11° СООТВЄТСТВЄННО), диапазон необходимых значений угла атаки самолета на режиме захода на посадку можно принять:

а з. п. min =^Кас н. к+4° (ограничение от касания ВПП носовыми колесами при посадке самолета с полным выравниванием без участка выдерживания);

а з. п. max=tw хв_3° (ограничение от касания ВПП хвостовой частью фюзеляжа);

а з. п. min = v кас н. к.~5,5°(ограничение от касания носовыми колесами при посадке самолета с неполным выравниванием).

На рис.6.41 приведены области рекомендованных углов атаки для захода на посадку О’з. п. в зависимости от критических углов атаки а кр для магистральных самолетов в посадочной конфигурации. Значение а кр соответствует максимальному значению коэффициента подъемной силы Сушах* или Сус сваливания, а угол атаки Яз. п. соответствует значению Су3.п = 0,59 СуС (Сутах) (это отвечает требованию V"з. п.= 1,3 Vc).

С целью сокращения потребной длины посадочной полосы для пассажирских и транспортных самолетов целесообразно принять методику посадки с неполным выравниванием (угол наклона траектории в < 0°). Оценочные расчеты показывают, что при таком методе

посадки потребная длина посадочной полосы уменьшается на 300-г 600 м. Однако метод посадки с неполным выравниванием может безопасно применяться только на таких самолетах, у которых угол тангажа в момент приземления будет положительным.

Значения вертикальных скоростей снижения в момент приземления (касания ВПП) при использовании метода посадки с неполным выравниванием должны быть приемлемы по условиям прочности самолета и обеспечения комфорта пассажиров и экипажа.

Для применения метода посадки самолета с.неполным выравниванием необходимо, чтобы углы атаки самолета при планировании по посадочной, глиссаде были бы достаточно болыиими — не менее 5,5°(здесь учтено, что скорость захода на посадку может быть больше рекомендованной на 15 км/ч);

Аэродинамическая компоновка крыла современных маги­стральных пассажирских самолетов должна быть сделана с учетом

возможности посадки самолета с неполным выравниванием, так как на этих самолетах должна применяться автоматическая посадка, которая осуществляется с неполным выравниванием 0<О.

Для того, чтобы углы атаки самолета на режиме захода на посадку находились в рекомендованном диапазоне, необходимо иметь определенное соотношение между коэффициентами Сушах И СуО. Необходимую связь между этими коэффициентами можно найти из следующих соотношений:

СуЗЛ.= 0,59 Сушах

Суз. п.- СуО+ CyCt з. п.

0,59 Сушах СуО

Суо -коэффициент подъемной силы при 0;

Су -производная коэффициента подъемной силы по углу атаки (обычно для рассматриваемых самолетов близка к 0, 1/град).

Суо = Суз. п. 0,1(5,5-і-8,0) =0,59Сушах -(0,554-0,8)

Эти соотношения могут быть использованы при разработке аэродинамической компоновки самолета в посадочной конфигурации, и из них, в частности, следует, что из условий эксплуатации самолета можно определить максимальные несущие свойства самолета или определить потребное значение Суо самолета в посадочной
конфигурации; например, при Су шах=2, 5 рекомендуемое значение не должно выходить из диапазона Суо = 0> 67-г 0,92. При выходе значения Суо из этого диапазона возникает большая вероятность приземления самолета на носовые колеса или на хвостовую часть фюзеляжа, т. е. в этом случае безопасность посадки самолета снижается.

Определение диапазона допустимых углов атаки при заходе самолета на посадку по условиям безопасности позволяет также определить соотношения между Сушах И <2кр И СВЯЗЬ МЄЖДУ Якр И
а з. п. Для нахождения этих дополнительных связей можно использовать соотношение:

яЗ. П. = акр — (6.36)

здесь К -коэффициент, учитывающий уменьшение зависимости Су=/(а)вблизи значения Сушах; коэффициент К можно приближенно принять равным К=0,9.

Преобразование формул (6.35)’ и (6.36) позволяет найти следующие дополнительные рекомендуемые соотношения:

СС кр ~ (5> 5°-г 8, 0) 4, 55 Сушах

Сутах~0> 22 СС кр (1* 2~ 1,76)

Суо=0, Шкр- (1,26Н-1,85)

акр=7,7Суо+(9,7° — г 14,2°)

Пользуясь этими соотношениями, можно правильно разработать аэродинамическую компоновку крыла самолета в посадочной конфигурации.

Сегодня небольшая статья для восстановления порядка в понятиях. Хотя основной принцип моих рассказов – максимальная простота, но, видимо, от парочки-другой аэродинамических определений нам все равно никуда не деться. Однако уж совсем в дебри мы конечно не полезем, я думаю… 🙂 Итак начнем.

Определение угла атаки

Говорить будем для удобства об уже известном нам , и вы уже знаете, что это справедливо для крыла в целом.

В одной из предыдущих статей мы говорили о подъемной силе, образующейся при обтекании несимметричного профиля, расположенного для простоты понимания параллельно потоку (т.е. упрощенный вариант). На самом деле любое крыло (т.е. само собой профиль) расположено под углом к нему. Таким образом существует такое очень важное понятие, как . Определим его поточнее.

Минимальное расстояние по прямой от носика профиля до его законцовки (между точками А и В) – это хорда профиля. А угол между хордой и направлением движения набегающего потока – это и есть угол атаки α . Поток при этом рассматриваем спокойным, то есть невозмущенным. На будущее замечу, что поток может быть ламинарным, когда он течет плавно, без перемешивания близлежащих слоев и турбулентным, когда возникают вихри и перемешивание слоев.

Аэродинамическая сила

И вот здесь можно раскрыть маленький секрет :-). На самом деле нет подъемной силы, как самостоятельной величины. Но я вас, конечно, не обманывал. Просто кроме подъемной (Y) есть еще одна сила аэродинамического характера. Это сила сопротивления воздуха (X). Сопротивление имеет немалую величину и особенно при наличии угла атаки ее нельзя не учитывать. Обе эти силы в сумме составляют величину, которая называется полная аэродинамическая сила (R). Вот она-то как раз и воздействует на профиль крыла. Приложена она в точке с названием центр давления. Почему давления? Потому что воздух «давит» на профиль посредством этой самой силы.

С введением понятия возникает еще одна вещь, которая очень важна и о ней нельзя не упомянуть. При движении профиля под углом к набегающему потоку этот поток как бы скашивается и приобретает некоторое движение вниз. Поскольку воздух имеет определенную массу, то по закону сохранения импульса на профиль будет действовать сила, направленная в обратном направлении (т.е. практически вверх), и от величины этой массы зависящая. Она тоже будет участвовать в формировании полной аэродинамической силы, а значит и подъемной силы профиля, хотя ясно, что сама она имеет несколько иную природу образования, нежели та, о которой мы говорили .

При обтекании профиля (как несимметричного, так и любого другого) эти два вида подъемной силы как бы дополняют друг друга, причем решающую роль (по величине) теперь играет сила, возникающая в результате наличия угла атаки . Подъемная сила, возникающая согласно закону Бернулли играет уже второстепенную роль, что и происходит на реальном самолете.

Благодаря этому явлению, летать может практически любая, даже плоская пластинка. Для этого одно требование: должен быть угол атаки. Как только пластина становится непараллельной набегающему потоку, сразу возникают вышеупомянутые аэродинамические силы и процесс пошел… Вот какое вобщем-то важное понятие, оказывается .

Заканчивая эту статью, скажу, как и раньше. Мы сегодня упомянули всего несколько терминов и определений из королевы авиационных наук аэродинамики. Всего лишь упомянули! На самом же деле эта наука настолько же сложна, насколько и интересна. Однако восхитительная красота авиации доступна любому человеку, даже несведущему в аэродинамике… 🙂

P.S. В заключение предлагаю посмотреть небольшой ролик, неплохо иллюстрирующий обтекание профиля в зависимости от угла атаки и силы, действующие на него. Красным показано повышенное давление, синим пониженное.

P.S.S. Две иллюстрации, использованные в этой статье взяты с ресурса http://www.rcdesign.ru/articles/avia/wings_profile. Спасибо их автору Константину Бочкову.

Угол атаки

Угол атаки (общепринятое обозначение - буква греческого алфавита альфа) - угол между направлением скорости набегающего на тело потока (жидкости или газа) и характерным продольным направлением, выбранным на теле, например у крыла самолёта это будет хорда крыла, у самолёта - продольная строительная ось, у снаряда или ракеты - их ось симметрии. При рассмотрении крыла или самолёта угол атаки находится в нормальной плоскости, в отличие от угла скольжения.

Угол атаки летательного аппарата - угол между хордой крыла и проекцией его скорости V на плоскость ОХY связанной системы координат; считается положительным, если проекция V на нормальную ось OY отрицательна. В задачах динамики полёта используется пространственный У. а.: (α)п - угол между осью ОХ и направлением скорости ЛА.

Датчики углов атаки у ракеты «воздух-воздух».

Ссылки

  • Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.
  • ГОСТ 20058-80 "Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения".

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Угол атаки" в других словарях:

    угол атаки Энциклопедия «Авиация»

    угол атаки - Рис. 1. Угол атаки профиля. угол атаки — 1) У. а. профиля — угол α между направлением вектора скорости набегающего потока и направлением хорды профиля (рис. 1, см. также Профиль крыла); геометрическая характеристика, определяющая режим… … Энциклопедия «Авиация»

    - (Angle of attack) угол наклона крыла самолета к направлению потока воздуха. Он в среднем колеблется от 1° до 14°. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 Угол атаки угол между како … Морской словарь

    1) У. а. профиля угол (α) между направлением вектора скорости набегающего потока и направлением хорды профиля (см. также Профиль крыла); геометрическая характеристика, определяющая режим обтекания профиля. Изменение У. а. приводит к изменению… … Энциклопедия техники

    Угол между направлением скорости движения тела и направлением, выбранным на теле, напр. у крыла хордой крыла, у снаряда, ракеты и т. д. осью симметрии … Большой Энциклопедический словарь

    Угол между направлением скорости поступательно движущегося тела и к. н. характерным направлением, связанным с телом, напр. у крыла самолёта с хордой крыла (см. рис. в ст. (см. ЦЕНТР ДАВЛЕНИЯ)), у снаряда, ракеты с их осью симметрии. Физический… … Физическая энциклопедия

    угол атаки - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN angle of attackincidence angleincidence … Справочник технического переводчика

    Угол между направлением скорости поступательного движения тела и каким либо характерным направлением, выбранным на теле, например у крыла хордой крыла, у снаряда, ракеты и т. д. осью симметрии. * * * УГОЛ АТАКИ УГОЛ АТАКИ, угол между… … Энциклопедический словарь

    угол атаки - atakos kampas statusas T sritis fizika atitikmenys: angl. angle of attack vok. Angriffswinkel, m; Anstellwinkel, m rus. угол атаки, m pranc. angle d’attaque, m … Fizikos terminų žodynas

    Угол между направлением скорости поступательно движущегося тела и каким нибудь характерным направлением, выбранным на теле, например у крыла самолёта хордой крыла, у снаряда, ракеты их осью симметрии … Большая советская энциклопедия

Книги

  • Экипаж. Предельный угол атаки , Орлов Андрей Юрьевич. В августе 1995 года российский самолет Ил-76 с грузом боеприпасов совершал коммерческий рейс из Тираны в Баграм. На его борту было семь членов экипажа, все - граждане России. Груз…

В прямолинейном горизонтальном полёте угол атаки самолета при увеличении скорости растёт, добавляя летательному аппарату подъёмную силу, которую создаёт крыло. Однако растёт и индуктивное сопротивление. Угол атаки самолета обозначается греческой буквой "альфа" и означает тот угол, который расположен между хордой крыла и направлением скорости потока воздуха.

Крыло и поток

Сколько существует на свете авиация, столько и грозит летательным аппаратам одна из самых частых и страшных опасностей - сваливание в штопор, потому что угол атаки самолета становится выше критической величины. Тогда плавность обтекания потоком воздуха крыла нарушается, а подъёмная сила резко уменьшается. Срыв обычно происходит на одном крыле, поскольку обтекание почти никогда не бывает симметричным. Именно на это крыло самолёт и сваливается, и хорошо, если сваливание не перейдёт в штопор.

Отчего происходят такие ситуации, когда угол атаки самолета возрастает до своего критического значения? Либо была потеряна скорость, либо маневрирование слишком сильно перегрузило летательный аппарат. Ещё такое может произойти, если высота слишком велика и приблизилась к "потолку" возможностей. Чаще всего последнее происходит при обходе сверху грозовой облачности. Скоростной напор на больших высотах невелик, судно становится всё более неустойчивым, и критический угол атаки самолета может увеличиваться самопроизвольно.

Авиация военная и гражданская

Описанная выше ситуация очень хорошо знакома лётчикам манёвренных самолётов, особенно истребителей, которые имеют теоретические знания и достаточный опыт, чтобы выходить из любой ситуации подобного плана. Но суть этого явления - чисто физическая, и потому оно свойственно всем летательным аппаратам, всех типов, всех размеров и любого предназначения. Пассажирские на предельно малых скоростях не летают, и энергичные манёвры для них тоже не предусмотрены. Гражданские лётчики чаще всего и не справляются с ситуацией, когда угол атаки крыла самолета становится критическим.

Считается необычной ситуацией, если пассажирское судно вдруг теряет скорость, более того, многие считают, что это, вообще, исключено. Но нет. И отечественная, и зарубежная практика показывает, что такое происходит даже не очень редко, когда сваливание заканчивается катастрофой и гибелью многих людей. Гражданских лётчиков не слишком хорошо готовят для преодоления такого положения летательного аппарата. А ведь переход в штопор можно предотвратить, если угол атаки самолета при взлете не становится критическим. На малой высоте сделать практически ничего невозможно.

Примеры

Так случилось в катастрофах, произошедших с самолётами ТУ-154 в разное время. Например, в Казахстане, когда судно снижалось в режиме срыва, лётчик не переставал тянуть штурвал на себя, пытаясь прекратить снижение. А судну надо было дать обратное! Опустить нос, чтобы набрать скорость. Но до самого падения на землю лётчик этого так и не понял. Примерно то же самое происходило и под Иркутском, и под Донецком. Также А-310 неподалёку от Кременчуга пытался набрать высоту, когда надо было набирать скорость и всё время наблюдать датчик угла атаки в самолете.

Подъёмная сила образуется в результате увеличения скорости потока, который обтекает крыло сверху по сравнению со скоростью потока под крылом. Чем большую скорость набрал поток, тем меньше давление в нём. Разность давления на крыле и под крылом - вот она, подъёмная сила. Угол атаки самолета - это показатель нормального полёта.

Что нужно делать

Если судно вдруг идёт в крен направо, лётчик отклоняет штурвал влево, против крена. При на консоли крыла отклоняется вниз и увеличивает угол атаки, тормозя струю воздуха и повышая давление. В это же время сверху на крыле поток ускоряется и понижает давление на крыло. А на правом крыле в тот же самый момент происходит обратное действие. Элерон - вверх, уменьшается угол атаки и подъёмная сила. И судно из крена выходит.

Но если угол атаки самолета (при посадке, например) близок к критическому, то есть слишком велик, элерон вниз отклонять нельзя, тогда плавность воздушной струи нарушается, начиная завихряться. И вот это уже срыв потока, резко убирающий скорость течения воздуха и так же резко повышающий давление на крыло. Подъёмная сила быстро сходит на нет, в то время как на другом крыле всё нормально. Разность подъёмной силы крен только увеличивает. А лётчик-то хотел как лучше... Но судно начинает снижаться, уходить во вращение, в штопор и падение.

Как поступить

Про угол атаки самолета "для чайников" рассказывают многие практикующие лётчики, даже Микоян об этом много писал. В принципе, тут всё просто: полной симметрии в воздушном потоке практически не бывает, а потому даже без крена может случиться срыв потока воздуха, и тоже только на одном крыле. Люди, весьма далёкие от пилотирования, но знающие законы физики, смогут сообразить, что это угол атаки самолета стал критическим.

Вывод

Теперь легко сделать простой и фундаментальный вывод: если угол атаки велик на малой скорости, нельзя, категорически нельзя противодействовать крену элеронами. Он убирается рулём поворота (педалями). В противном случае легко спровоцировать штопор. Если сваливание всё же произошло, выводить из этой ситуации судно умеют лишь военные лётчики, гражданских такому не учат, они летают по очень строгим ограничительным правилам.

А нужно учить! После авиакатастроф всегда тщательно анализируются записи разговоров из И ни разу в кабине разбившегося в штопоре самолёта не звучало "Штурвал от себя!", хотя это единственная возможность спасения. И "Нога против крена!" не звучало тоже. к таким ситуациям не готовы.

Почему так происходит

Пассажирские самолёты почти полностью автоматизированы, что, безусловно, облегчает действия лётчика. Особенно это касается сложных метеоусловий и полётов в ночное время. Однако именно здесь кроется огромная опасность. Если наземной системой воспользоваться невозможно, если откажет хоть один узел в автоматической системе, тогда нужно использовать ручное управление. Но лётчики привыкают к автоматике, постепенно теряя навыки пилотирования "по старинке", тем более в сложных условиях. Ведь даже тренажёры для них настроены на автоматический режим.

Так происходят авиакатастрофы. Например, в Цюрихе пассажирский самолёт не смог нормально приземлиться по приводам. Погода была минимальная, и лётчик не вырулил, столкнулся с деревьями. Все погибли. Часто бывает, что именно автоматика становится причиной сваливания в штопор. Автопилот всегда против самопроизвольного крена использует элероны, то есть делает то, что при угрозе сваливания делать никак нельзя. На больших углах атаки автопилот должен быть незамедлительно выключен.

Пример действий автопилота

Автопилот вредит не только при начале сваливания, но и при выводе самолёта из штопора. Примером тому может послужить случай в Ахтубинске, когда прекрасный военный лётчик-испытатель вынужден был катапультироваться, так и поняв, в чём же дело. Он атаковал цель при включённом автопилоте, когда сорвался в штопор. Дважды ему удавалось прекратить вращение самолёта, но автопилот упрямо манипулировал элеронами, и вращение возвращалось.

Подобные проблемы, которые постоянно возникают в связи с широчайшим распространением запрограммированного автоматического управления воздушными суднами, чрезвычайно беспокоят не только отечественных специалистов, но и зарубежную гражданскую авиацию. Проводятся международные семинары и слёты, посвящённые безопасности полётов, где непременно отмечается, что экипажи мало тренированы в управлении самолётом с высокой степенью автоматизации. Они выходят из плачевных ситуаций только в том случае, если пилот располагает личной изобретательностью и хорошей техникой ручного пилотирования.

Самые частые ошибки

Даже ту автоматику, которой оснащено судно, пилоты часто недостаточно понимают. В 40% это сыграло свою роль (из них 30% окончились катастрофой). В США начали составлять свидетельства дисгармонии у лётчиков с самолётом высокой автоматизации, и накопился их уже целый каталог. Очень часто лётчики даже не замечают отказ автомата тяги и автопилота вообще.

Плохо контролируют они и состояние скорости и энергии, потому это состояние не сохраняется. Некоторые лётчики не осознают, что отклонение рулей перестало быть правильным. Нужно контролировать траекторию полёта, а лётчик отвлекается на программирование автоматической системы. И ещё множество подобных ошибок происходит. Человеческий фактор - 62% всех тяжких авиапроисшествий.

Объяснение "на пальцах"

Что такое угол атаки самолета уже, наверное, знают все, и важность этого понятия осознают даже люди, к авиации не относящиеся. Впрочем, есть ли такие? Если и есть, то их на Земле очень мало. Летают-то самолётами почти все! И почти все полётов боятся. Кто-то внутренне переживает, а кто-то прямо на борту впадает в истерику при малейшей турбулентности.

Наверное, нужно было бы рассказывать пассажирам о самых основных понятиях, касающихся воздушного судна. Ведь критический угол атаки самолета это вовсе не то, что они сейчас переживают, и лучше, если они это поймут. Можно поручить стюардессам донести подобную информацию, приготовить соответствующие иллюстрации. Например, рассказать, что нет такой самостоятельной величины, как подъёмная сила. Просто не существует. Всё летит благодаря аэродинамической силе сопротивления воздуха! Такие экскурсы к основам наук могут не только отвлечь от страха полёта, но и заинтересовать.

Датчик угла атаки

В самолете обязательно есть прибор, способный определять угол крыла и горизонтальность потока воздуха. То есть такой прибор, от которого зависит благополучие полёта, стоит хотя бы на картинке пассажирам продемонстрировать. С помощью этого датчика можно судить, насколько нос самолёта смотрит вверх или вниз. Если угол атаки критический, двигателям мощности не хватает, чтобы продолжить полёт, а потому происходит сваливание на одно крыло.

Можно и совсем просто объяснить: благодаря этому датчику можно увидеть угол между самолётом и землёй. Линии должны быть параллельны в полёте на уже набранной высоте, когда до снижения ещё есть время. А если идущая вдоль земли линия стремится к линии, мысленно нарисованной вдоль самолёта, получается угол, который и называется углом атаки. Без него тоже обойтись не получится, потому что самолёт под углом взлетает и производит посадку. Но критическим ему быть нельзя. Примерно так и нужно рассказывать. И это далеко не всё, что нужно знать пассажирам о полётах.